A Prediction-Based Visual Approach for Cluster Exploration and Cluster Validation by HOV3
نویسندگان
چکیده
Predictive knowledge discovery is an important knowledge acquisition method. It is also used in the clustering process of data mining. Visualization is very helpful for high dimensional data analysis, but not precise and this limits its usability in quantitative cluster analysis. In this paper, we adopt a visual technique called HOV to explore and verify clustering results with quantified measurements. With the quantified contrast between grouped data distributions produced by HOV, users can detect clusters and verify their validity efficiently.
منابع مشابه
Computational intelligence approach for gene expression data mining and classification
The exploration of high dimensional gene expression microarray data demands powerful analytical tools. Our data mining software, VISual Data Analyzer (VISDA) for cluster discovery, reveals many distinguishing patterns among gene expression profiles. The model-supported hierarchical data exploration tool has two complementary schemes: discriminatory dimensionality reduction for structure-focused...
متن کاملCustomer Retention Based on the Number of Purchase: A Data Mining Approach
Purpose: this study wants to find any relationship between the numbers of purchase and the income the customer brings to the company. The attempt is to find those customers who buy more than one life insurance policy and represent the signs of good payments at the same time by the help of data mining tools. Design/ methodology/ approach: the approach of this research is to use data mining tools...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملA Visual Method for High-Dimensional Data Cluster Exploration
Visualization is helpful for clustering high dimensional data. The goals of visualization in data mining are exploration, confirmation and presentation. However, the most of visual techniques serviced for cluster analysis are focused on cluster presentation rather than cluster exploration. Several techniques are proposed to explore cluster information by visualization, but most of them heavily ...
متن کاملCluster Stability for Finite Samples
Over the past few years, the notion of stability in data clustering has received growing attention as a cluster validation criterion in a sample-based framework. However, recent work has shown that as the sample size increases, any clustering model will usually become asymptotically stable. This led to the conclusion that stability is lacking as a theoretical and practical tool. The discrepancy...
متن کامل